When you drive your car your dashboard instruments display the speed, amount of fuel left, and distance traveled. You can use Google Maps on your smart phone to find restaurants, post offices, or other important landmarks all around you. Why can’t this sort of information be given to you all the time, streaming directly into your field of vision on a contact lens? That’s the question University of Washington Prof. Babak A. Parviz asks in his recent letter to IEEE Spectrum. Parviz and his team have been developing miniature circuits and simple LED displays and integrating these elements onto a contact lens-like polymer. They’ve tested them on rabbits who can wear the devices without harm. As Parviz points out, introducing Augmented Reality onto a contact lens is just a matter of time and effort.
When you drive your car your dashboard instruments display the speed, amount of fuel left, and distance traveled. You can use Google Maps on your smart phone to find restaurants, post offices, or other important landmarks all around you. Why can’t this sort of information be given to you all the time, streaming directly into your field of vision on a contact lens? That’s the question University of Washington Prof. Babak A. Parviz asks in his recent letter to IEEE Spectrum. Parviz and his team have been developing miniature circuits and simple LED displays and integrating these elements onto a contact lens-like polymer. They’ve tested them on rabbits who can wear the devices without harm. As Parviz points out, introducing Augmented Reality onto a contact lens is just a matter of time and effort.
Commentaires
Enregistrer un commentaire
Comment / Message